eRHIC e-/e+ Ring & Injector G. Townsend Zwart, M. Farkhondeh, W. A. Franklin, W. S. Graves, R. Milner, C. Tschalaer, J. v. d. Laan, D. Wang, D. Wang, F. Wang, A. Zolfaghari - MIT Bates - ·Status / Open Questions - •5-10 GeV Ring (Design Goals/Strategy/Comparison w/ other facilities) - •10 GeV electron/positron injector - ·Ring Polarization Handling/Design - ·Lepton Ring Path Length Adjustment - ·Beam Instabilities Comparison w/ existing facilites - Preliminary Cost Considerations - ·Operational Mode An Open Question - •Summary #### Status: April 2004 - •The BNL/Bates/DESY/BNP team has developed an eRHIC Zero Order Design (ZDR) (Hard Copies Available) - •This achieves a luminosity of 0.44×10^{33} using conservative limits on: - -Beam beam tune shift - -Synchrotron Radiation Heating - -Beam emittance aspect ratio and focusing through IP using existing technologies for: - -Polarized electron source - -10 GeV injection accelerator - -e-/e+ storage ring #### Open Questions/Action Items Action Items for continuing eRHIC design effort: - -Layout on BNL site - -Interference/clearance w/ RHIC rings - -Path length adjustment for varying hadron energies - -Continuing evaluation/simulation of equilibrium polarization due to alignment tolerances and magnetic errors - -Integrate downstream spin rotator w/longitudinal Compton Polarimeter - -Compare merits of different injector architectures eRHIC operation - -Positron production, accleration and capture e-/e+ ring dynamic aperture - -Develop polarized photoinjector satisfying eRHIC requirements - -Refine cost models for eRHIC accelerator and rings ## eRHIC e-/e+ Ring Design Goals | Peak luminosity for 10 GeV e on 250 GeV p | $10^{32} - 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ | |--|--| | Longitudinal polarization | > 70% at IP | | Average current | 0.45 Amp | | Electrons per bunch | 1011 | | Number of electron bunches (simple harmonic of RHIC) | 120 | | Energy range | 5 - 10 GeV | | Positron (electron) radiative polarization time | 20 minutes @ 10
GeV
10 Hours @ 5 GeV | #### Distinguishing features of eRHIC-e #### Comparison to existing lepton rings | | HERA-e | B-Fac | eRHIC-e | |--------------|--------|--------------|------------| | Energy (GeV) | ~ 27 | ~3(L), ~9(H) | 5 - 10 | | Current (A) | 0.05 | 1.0 – 2.5 | 0.45 – 1.0 | | Polarization | Yes | No | Yes | | BB para. | ~0.05 | ~0.08 | 0.08 | #### eRHIC-e: a combination of - wide operating energy range - high intensity, though not extremely high - strong-strong BB regime - longitudinal polarization ## Electron/Positron Ring Strategy #### F. Wang Goals: Maximum luminosity and maximum polarization #### Fixed energy ring - no ramping - -Most stable operation - -Fixed energy allows injection of prepolarized electrons P>70% (no ramping induced depolarization) - -Prepolarized electron injection allows large dipole curvature (ρ = 81 m) (radiative polarization not required) - -Large dipole curvature reduces RF synchrotron load & vacuum chamber heating - -Fixed energy allows "top-up" operation - -Top up maintains maximum (optimal) current - -Top up allows shorter lifetime & therefore higher luminosity (higher beam-beam tune shift permitted) But ... self polarization of positrons still required - 22 min. at 10 GeV But ... fixed energy ring requires expensive 10 GeV injector ## Electron/Positron Ring - ·Race track shaped storage ring in one plane - ·Vertical polarization in arcs spin rotators for long. pol. at Interaction Point - Polarized electron injection from 5-10 GeV - Unpolarized positron injection from 5-10 GeV - •Self polarization of positrons at 10 GeV T_p = 20 minutes ## Electron/Positron Ring at 4:00 (?) #### Design Drivers/Considerations | | | Reason | Concerns & Measures | |----------------------------------|--|--|---| | Beam emittance (uncoupled x, nm) | 40-60 (10 GeV)
50-90 (5 GeV) | Match ion beam | Arc lattice Wiggler superbend | | Beam y/x emittance ratio | ~0.2 | High luminosity | 70% polarization
High P _{eq}
HERA update | | Damping decrement | Damping time < ~25 ms at 5GeV? | Less beam-beam limit reduction at low E | Wiggler superbend for low E operations | | Bunch intensity
(120 bunches) | 1 x 10 ¹¹ (0.45A) | High luminosity | Vacuum chamber (syn. radiation), RF, instability | | Injection | On energy injection: top-off or continuous | Integrated luminosity Shorter Lifetime accomodated | On energy Injection, flexible bunch-bunch filling. | | Beam-beam tune shift limit | ξ _y ~ 0.08 | B-factory achieved | Working point near integer(spin), study | #### Luminosity Considerations $$L = \frac{\pi}{r_e r_i} F_c \gamma_e \gamma_i \xi_i \xi_e \sigma'_{i,x} \sigma'_{e,x} k_e \frac{(1+k)^2}{k^2}$$ Fc is the collision frequency ξ the beam-beam tune shift $ke = \epsilon e, y/\epsilon e, x$ is the electron beam emittance ratio $k=\sigma y/\sigma x$ is the beam aspect ratio at IP. σ' is the beam angular amplitude at IP. - ·Round Beams would be preferable for maximum luminosity. - à Comparable balanced beam-beam tune shifts (x,y) - But problematic for polarization - ·Bates Siberian Snake is an example of a possible local emittance xformer - ·Flat Beams Adopted for the baseline ZDR #### 10 GeV Accelerator Options J.v.d.Laan - -Several variants appear viable - -Injector is expensive, but will not limit eRHIC physics performance Recirculating NC linac Recirculating SC linac Figure 8 booster synchrotron #### Polarized Photoinjector #### M. Farkhondeh •Stack many pulse trains (15000) of 1.3 pC bunches at 25 Hz rates over 10 minutes to fill electron ring. - •Similar peak requirements as JLAB's GO experiment, 40 uA, but very low macroscopic duty factor and average currents. - ·Bates has excellent infrastructure and expertise to develop this source. ## Solenoidal Spin Rotator D.P. Barber, Y.M. Shatunov - ·No vertical bends - •Pure P longitudinal only at 8.5 GeV #### e-ring IR straight layout: (lattice ZDR2.0) #### Polarization Simulations #### Spin matching: solenoid in rotator: locally spin-transparent whole IR: spin-synchro term mainly. SLICK simulation with lattice: (D. Barber), first results, more to come. sensitive to orbit errors, not a surprise. with good corrections, polarization is quite decent with 0.3mm rms COD #### Compton Polarimetry #### W.A.Franklin - Compton scattering cross section is well known theoretically and has a term dependent on electron spin and laser helicity - > Can extract *e*⁻ polarization by measuring asymmetries in scattering rates for circularly polarized laser light - Compton scattering in highly relativistic frame compresses angular distribution into a narrow kinematic cone and shifts photon frequencies into gamma regime - > Detect backscattered photons or scattered electrons with compact detector #### Longitudinal Polarimeter Location • Locate longitudinal polarimeter between spin rotators and downstream of electron-ion interaction point - Weak bend upstream of polarimeter compensates for spin precession due to detector's magnetic field - Limit Compton scattering interaction region to short straight section (5 m) to reduce sensitivity to bremsstrahlung background - Strong bend downstream of Compton interaction region provides sweep magnet for photon line cledarance and momentum analysis for scattered electrons # IR Region "Second Crossing Problem" ## Lepton Ring Half Lattice #### Variable Emittance for Optimum Luminosity F. Wang | Ke=
εe,y/εe,x | $\varepsilon_{\rm e,x}$ (nm.rad) | β _{e,x} * (m) | β _{e,y} * (m) | Protons (1e ¹¹) per bunch | ξx | ξу | L 1e32
(cm ⁻² s ⁻¹) | |------------------|----------------------------------|------------------------|------------------------|---------------------------------------|-------|------|---| | 0.1 | 54 | 0.19 | 0.47 | 0.57 | 0.016 | 0.08 | 2.5 | | 0.15 | 54 | 0.19 | 0.31 | 0.85 | 0.024 | 0.08 | 3.8 | | 0.18 | 54 | 0.19 | 0.26 | 1.0 | 0.029 | 0.08 | 4.5 | | 0.20 | 54 | 0.19 | 0.23 | 1.13 | 0.032 | 0.08 | 5.0 | | 0.25 | 54 | 0.19 | 0.19 | 1.41 | 0.04 | 0.08 | 6.3 | | 0.30 | 45 | 0.23 | 0.19 | 1.41 | 0.048 | 0.08 | 6.3 | | 0.5 | 27 | 0.38 | 0.19 | 1.41 | 0.08 | 0.08 | 6.3 | Lowest emittance substantially larger than 3rd generation light sources ## Dynamic Aperture F. Wang, D. Wang, A. V. Otboyev Goal of 10σ in both momentum and transverse phase space in the presence of alignment and magnetic errors and colliding beam conditions. LEGO (Beam size at IP) SAD (Normalized Beam Size) Also - Acceptance Issues for Positron Injection #### e-Ring Path length adjustment C.Tschalaer, B. Weng, S.Peggs | Proton
Energy | Proton
bunch
spacing
in time
(ns) | Colliding
frequenc
y (MHz) | Electron
ring RF
frequenc
y
(MHz) | Electron
bunch
spacing
(m) | Electron
beam
path
length
(m) | Electron
beam
path
length
changes
(m) | |------------------|---|----------------------------------|---|-------------------------------------|---|--| | 25 | 35.5471 | 28.1317 | 478.238 | 10.6568 | 1278.812 | 0.8919 | | 50 | 35.5283 | 28.1465 | 478.491 | 10.6511 | 1278.136 | 0.2161 | | 100 | 35.5237 | 28.1503 | 478.554 | 10.6497 | 1277.967 | 0.0473 | | 250 | 35.5223 | 28.1513 | 478.572 | 10.6493 | 1277.920 | 0.0 | Possible Solutions: Need engineering evaluation! - Magnet chicanes in the arc - Shift 180⁰ arc : No impact on optics, one knob adjustment. ## Variable Path Length for e-/e+ C. Tschalaer, B. Weng, S. Peggs, F. Wang - •The proton (heavy ion) velocity (energy) determines the collider frequency and consequently the electron path length. $L_{max} = 89$ cm - •A minimum proton energy of 50 GeV (rather than 25 GeV) reduces ΔL_{max} to 22 cm ·Other schemes are possible - but this is an unsolved/uncosted item #### Scratch of a "super-bend" for radiation enhancement at 5 GeV | | All bends
on | Center
bend on
only | |-----------------------|-----------------|---------------------------| | ρ (m) | 70.3m | 23.4 | | P
(MW) | ~0.35 | ~1.06 | | τ _χ (msec) | ~54.5 | ~18.1 | $\xi^{\infty}_{\ \ v}$ reduction ~ 20% (Compare to 10 GeV) *Total path length increase: ~4.48cm. * Linear rad. power at 10 GeV ~14kW/m e-ring path length adj. requirement (with super-bends) #### Beam Instabilities D. Wang Conventional instabilities (impedance-driven) single bunch front: comparable to BF's now multi-bunch front: relatively easier than BF's ## eRHIC lepton ring: needs to deal with both e- and e+ beams #### Other instabilities Fast Beam-Ion Instability (FBII, for e-) Electron Cloud Effects (ECE, for e+) Comparable to B-factories #### Intensity Parameters: Not Extreme | 1 Particle/bunch(| eRHIC
lepton ring | PEP-II
LER/HER | KEKB
LER/HER | CESR-III | |-----------------------|----------------------|-------------------|-----------------|----------| | Energy(GeV) | 5 ~ 10 | 3.1/9.0 | 3.5/8.0 | 5.3 | | Circumference(m) | 1278 | 2200 | 3016 | 776 | | RF freq.(MHz) | 478.6 or
506.6 | 476 | 508 | 500 | | RF voltage(MV) | 5~25 | 6/15 | 10/18 | 3 | | Total current(A) | 0.45 | 2.4/1.4 | 1.9/1.2 | 1.0 | | Particle/bunch(1e11) | 1.0 | 1.0/0.6 | 0.9/0.7 | 2.0 | | Bunch spacing(m) | 10.6 | 1.9 | 2.4 | 2.4 | | Energy loss/turn(MeV) | 0.72/11.7 | 1.2/3.6 | 1.6/3.5 | 1.0 | | Average beta(m) | ~15 | ~17 | ~10 | ~20 | | Bunch length(cm) | 1~2 | 1.0 | 0.4 | 1.5 | Single bunch parameters of BF and CESR: in routine operation, not the limits. #### Bottom up costs estimates J.v.d.Laan | Quads | Dipoles | Orbit Correctors | Sextupoles | |-------|----------------------------------|------------------|--------------------| | | NEGs | Bellows | Getter / Ion pumps | | | Flip Target / Wire Scanner / BPM | | Ion Clearers | | | Supports | | Controls | - ·Assembling "notebook" of quotations/component costs - ·Costs as delivered to the laboratory no installation Costs: 59 k\$/m ## Systems Costs Estimates: Main Ring | Storage Ring | | |-----------------------------|-------| | Tunnel | 13.9 | | Magnets (incl. measurements | 53.2 | | Support/Stands | 2.5 | | Vacuum | 21.5 | | Power conversion | 8.5 | | RF | 13.7 | | Feedback (transv. + long.) | 3.7 | | Diagnostics | 3.1 | | Control System | 8.0 | | Subtotal Ring | 128.1 | | Interaction Region | | | Magnets | 4.5 | | Power conversion | 1.8 | | Support/Stands | 0.6 | | Vacuum | 1.6 | | Diagnostics | 0.6 | | Subtotal Interaction Regio | n 9.1 | | Total Ring | 137.2 | #### Top Down Cost Estimates Top down scaling from construction of other accelerators Reasonably consistent with bottoms up estimates Large variability in injector due to choice of injector ## Operation of eRHIC Lepton Ring - ·Assumption I: >5 Hr Proton/Hadron Lifetime $\frac{1}{2}$ Hour Fill/Ramp Time - ·Assumption II: >5 Hr Lepton Lifetime - •Assumption III: Pequilibrium > 50% - ·Assumption IV: Stored Lepton Current ~ 1 A - · Assumption V: On Energy Injection - ·Scenario I: Top up Lepton Current Every Second <1 mA Injector Pulses</p> Figure 8 Booster, SC Linac, NC Linac all satisfactory Detector Must "Tolerate" Injection ·Scenario II: Top up Lepton Current Every 10 minutes 10 mA Injector Pulses Polarizing Booster, SC Linac, NC Linac all satisfactory Detector state can be "safe" (reduced HV) during injection #### Possible Parameters for Higher Luminosity | | | Electron | Proton | Electron | Au | |-------------------------------|-------------------------------------|----------|-----------|----------|----------| | EnergyE | [GeV] | 10 | 250 | 10 | 100 | | $k=\epsilon_y/\epsilon_x$ | | 0.18 | 1 | 0.18 | 1 | | $K\sigma = \sigma_y/\sigma_X$ | | 0.43 | 0.43 | 0.43 | 0.43 | | ε_n (io n) | $[\pi mm mrad]$ | | 15.0 | | 6.0 | | Emittancs ε _x | [nm.rad] | 54.0 | 9.4 | 53.0 | 9.4 | | Emittancs εy | [nm.rad] | 9.7 | 9.4 | 9.5 | 9.4 | | βx* | [m] | 0.19 | 1.08 | 0.19 | 1.08 | | βу* | [m] | 0.19 | 0.2 | 0.20 | 0.2 | | ξx | | 0.042 | 0.0095 | 0.033 | 0.0095 | | ξy | | 0.1 | 0.0041 | 0.08 | 0.0041 | | Particles/Bunch | | 1.40E+11 | 1.4 1E+11 | 1.38E+11 | 1.40E+09 | | Luminosity £ | [cm ⁻² s ⁻¹] | | 1.0E+33 | | 9.9E+30 | #### Continuing Activities - -Layout on BNL site - -Interference/clearance w/ RHIC rings - -Path length adjustment for varying ion energies - -Continuing evaluation/simulation of equilibrium polarization due to alignment tolerances and magnetic errors - -Integrate downstream spin rotator w/longitudinal Compton Polarimeter - -Compare merits of different injector architectures eRHIC operation - -Positron production, acclereration and capture e-/e+ ring dynamic aperture - -Develop polarized photoinjector satisfying eRHIC requirements - -Refine cost models for eRHIC accelerator and ring - -Options for Higher luminosity #### Summary eRHIC ZDR now available in hardcopy Ring - Ring Design ready to proceed to a FDR (First Order Design Report) Polarization e- > 70% 5-10 GeV Polarization e+ > 70% (22 minutes at 10 GeV) Full Longitudinal Pol. at 8.5 GeV Luminosity 0.44×10^{33} (10 GeV on 250 GeV) Possible Increase of Lepton Current ($\sim 1A$) for L = 10^{33} Preliminary Design Review in Summer/Fall 2004 (?)